Cervical Spine Stingers and Transient Quadriplegia

Stanley A. Herring, MD
Director of Sports, Spine and Orthopaedic Health
UW Medicine Health System
Co-Medical Director
Seattle Sports Concussion Program
Harborview Medical Center/Seattle Children’s
Team Physician Seattle Seahawks
Team Physician Seattle Mariners
Seattle, Washington
Disclosures

I, Stanley A. Herring MD, nor any family member(s), have any relevant financial relationships to be discussed, directly or indirectly, referred to or illustrated with or without recognition within the presentation.
Stingers
Stingers

Common

• 50 to 65% of college players
 – Clancy 1977
 – Sallis 1992
Table 20-1. Brachial Plexus Stretch and Compression Injuries in the National Football League, 1980–1997

<table>
<thead>
<tr>
<th>Position</th>
<th>N (#cases)</th>
<th>Days Lost (Sum)</th>
<th>Days Lost (Mean)</th>
<th>Games Missed (Sum)</th>
<th>Games Missed (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linebacker</td>
<td>98</td>
<td>1953</td>
<td>20</td>
<td>191</td>
<td>2</td>
</tr>
<tr>
<td>Offensive lineman</td>
<td>92</td>
<td>1974</td>
<td>21</td>
<td>173</td>
<td>2</td>
</tr>
<tr>
<td>Defensive lineman</td>
<td>73</td>
<td>1036</td>
<td>14</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>Secondary</td>
<td>39</td>
<td>938</td>
<td>24</td>
<td>93</td>
<td>2</td>
</tr>
</tbody>
</table>

Permission to use statistics authorized by the National Football League.

Weinstein and Herring 2000
Pathomechanics

- **Tensile injury** to brachial plexus or cervical nerve root/spinal nerve complex
- **Compression injury** to brachial plexus or cervical nerve root/spinal nerve complex

Pathomechanics

- May be dependent upon skill level of athlete
 - Watkins 1986
Neuroanatomy

- Resistance to tensile force
 - Number of funiculi

- Sunderland
 1978
Neuroanatomy

- Resistance to tensile force
 - Number of funiculi
 - Amount of perineural tissue

- Sunderland
 1978
Neuroanatomy

- Resistance to tensile force
 - Number of funiculi
 - Amount of perineural tissue
 - Structure of dorsal & ventral roots

- Sunderland 1978
Neuroanatomy

- Resistance to tensile force
 - Number of funiculi
 - Amount of perineural tissue
 - Structure of dorsal & ventral roots
 - Linear vs. plexiform architecture
 - Sunderland 1978
Neuroanatomy

• Resistance to compressive force
 – Neuroforaminal narrowing
 – Epineural tissue of the brachial plexus

- Sunderland 1978
Neuroanatomy

- The nerve root/spinal nerve complex is the most susceptible area to tensile or compressive injury
- C5 – C7 (especially motor fibers) most vulnerable
 - Shortest
 - Direct alignment with upper trunk of plexus

- Sunderland 1978
Persistent stingers

• Case study – 55 football players
 – 11 professional, 37 collegiate, 7 scholastic
 – Levitz 1997
Persistent stingers

- 83% extension/compression mechanism
- 70% Spurling’s sign

– Levitz 1997
Persistent stingers

- 87% disc disease by MRI
- 93% disc disease or foraminal narrowing by MRI
- 53% Torg ratio <0.8

– Levitz 1997
Persistent stingers

- 266 collegiate football players
- 40 problematic stingers

– Meyer 1994
Persistent stingers

- 85% extension/compression
- 15% brachial plexus stretch

– Meyer 1994
Persistent stingers

- Pre-participation C-Spine X-rays
- 10 cervical MRI’s – normal
- 5 myelogram/ CT’s – normal
- 8 electrodiagnostic studies – 6 normal

– Meyer 1994
Persistent stingers

- 47.5% of stinger group had Torg ratio <0.8
- 25.1% of asymptomatic group had Torg ratio <0.8
 - p-value = 0.02
 - Meyer 1994
Stingers

Torg ratio

Foramen/ vertebral body ratio
Stingers

- Torg ratio
 - <0.8 scholastic
 - <0.7 collegiate
- Foramen/ vertebral body ratio
 - <0.73 (average) scholastic

- Castro 1997 Kelly 2000
Persistent stingers – Work-up

- Cervical spine x-rays
 - A/P & lateral
 - Obliques
 - Flexion/extension
- MRI
- Myelogram/CT
- EMG
Persistent Stingers- Treatment

• Rest
Persistent Stingers - Treatment

- Rest
- Rehabilitation
Persistent Stingers-Treatment

scap retraction on ball
Persistent Stingers - Treatment
Persistent Stingers- Treatment

weighted ball
Persistent Stingers-Treatment

- Rest
- Rehabilitation
- Medications
 - Oral
 - Selective injections
Persistent Stingers - Treatment

- Rest
- Rehabilitation
- Medications
 - Oral
 - Selective injections
Persistent Stingers - Treatment

- Rest
- Rehabilitation
- Medications
 - Oral
 - Selective injections
Persistent Stingers - Treatment

- Rest
- Rehabilitation
- Medications
 - Oral
 - Selective injections
- Equipment modifications
Persistent Stingers - Treatment

- Rest
- Rehabilitation
- Medications
 - Oral
 - Selective injections
- Equipment modifications
- Surgery
 - Foraminotomy
 - Fusion
Case Report
Stinger

- 23 year old professional football player
- 9/29/02 made tackle on special teams
- Extension/rotation of head to right
- Cervical and shoulder girdle region pain and burning
Case Report
Stinger

- Physical examination (09/29/02)
 - + Spurling’s maneuver to the right side
 - C5 verses upper trunk weakness (4+/5) on right side
 - Subtle diminished sensation lateral deltoid on right side
 - Normal reflexes
Case Report
Stinger

- 10/09/02
 - Spurling’s maneuver
 - External rotation and isolated supraspinatus testing 4+ to 5/-5
 - Normal sensation
Case Report
Stinger

What to do?
Case Report
Stinger

- Rehabilitation
- Equipment modification
- Return to play decision
 - 10/14/02
 - No recurrent stingers
 - 1/03 normal strength
 - Pro Bowl
Persistent Stingers

- Time to resolution of 1st stinger
- Recurrences
- Spurling’s vs. painless weakness
- Imaging studies-compression vs “battered nerve”
Transient Quadriparesis
Transient Quadripareisis
High Stakes Decision

Maddox checks out 'perfectly normal,' now must get over shock of scary injury

By Alan Robinson, Associated Press, 11/19/2002 18:42
Cervical Spinal Cord Injury
Types

• “Neurapraxia”
 – transient motor and/or sensory loss
 – 2-4 limbs affected
 – duration up to 36 hrs.

• Contusion
 – permanent injury
 – various patterns
Transient Quadriparesis
Mechanisms

- Metabolic
- Vascular
- Structural
 - Instability
 - Spinal stenosis
 - Congenital
 - Acquired
Cervical Spinal Stenosis Controversies

• How to define
 – bony dimensions
 – other factors

• How to measure
 – sensitivity
 – specificity
Cervical Spinal Stenosis

- Direct Measurement
 - lateral c-spine x-ray with known magnification
 - cross sectional imaging with CT or MRI

- Values for canal diameters (bony)
 - normal >15 mm (C2-C7)
 - narrow < 12mm
Cervical Spinal Stenosis

- Torg (Pavlov) ratio, 1986
 - indirect measure
 - avoids magnification error
 - positive if <0.8
 - high sensitivity, >90%
Cervical Spinal Stenosis
Subsequent Studies

- Herzog et al, Spine 1991
 - 49% of professional football players had a Torg ratio <0.8 at one or more levels
 - only 13% had true spinal stenosis by advanced imaging

- Odor et al, AJSM 1990
 - 32% professional and 34% rookie football players had Torg ratio <0.8 at one or more levels
Torg Ratio Pitfalls

- Athletes have large vertebral bodies
- Ratio is skewed toward stenosis
- Anatomic relationship of spinal cord and canal varies
Functional Reserve of Spinal Canal

- Amount of CSF surrounding spinal cord
- Shape of spinal cord
Return to Play
Torg & Glasgow, CJSM 1991

• No restriction
 – no hx of TQ; Torg ratio <0.8
• Relative restriction
 – one episode TQ; Torg ratio <0.8
• Absolute contraindication
 – TQ with instability, hard disc, cord compression, symptoms > 36 hrs., more than one episode
Return to Play
Cantu, Exercise and Sports Sciences Reviews 1995

• No restriction
 – one episode of TQ with full recovery and normal work-up

• Relative restriction
 – one episode of TQ as a result of minimal contact; minimal or mild disc herniation

• Absolute contraindication
 – TQ with functional spinal stenosis
Cervical Cord Neurapraxia
Torg et al, J Neurosurg 1997

- 110 athletes with CCN
- 63 (57%) RTP
- 35 (56%) 2nd episode of CCN
 - 3.1 +/- 4.0 episodes (range 2-25)
- Imaging (105 x-rays, 53 MRIs)
 - only 7% nl x-ray, 8% nl MRI
 - 34% spinal cord compression
Cervical Cord Neurapraxia
Torg et al, J Neurosurg 1997

• Risk of recurrence ~ spinal stenosis
 – smaller Torg ratio
 • (0.65 vs 0.72mm)
 – smaller disc level canal diameter
 • (8.7 vs 10.1mm)
 – less space available for the cord
 • (1.1 vs 2.0mm)

• No permanent neurological injuries
Cervical Cord Neurapraxia
Torg et al, J Neurosurg 1997

- Correlation
 - Canal stenosis
 - Recurrence

![Graph showing the probability of recurrence vs MRI disc level canal diameter (mm)]
Cervical Cord Neurapraxia

Torg et al, J Neurosurg 1997

- “May be advised not at increased risk of permanent neurologic injury with return”
- “Presence of stenosis does not result in irreversible cord injury”
Cervical Cord Neurapraxia
Torg et al, J Neurosurg 1997

- Uncontrolled case studies
- No physical exam data
- Imaging
 - 110 athletes, 53 MRI’s
- Follow-up
 - 15-228 months
Cervical Cord Neurapraxia
Torg et al, J Neurosurg 1997

- 10 players with cord compression
- Repeat assessment over time
- Subgroup susceptible?
- Outcome was return to play
Return to Play
Torg et. al. JBJS 2002

• No restriction
 – no hx of CNN; Torg ratio ≤0.8

• Relative restriction
 – one episode CNN; Torg ratio ≤0.8
 – one episode CNN with DDD or DJD
 – one episode CNN with cord deformation
Return to Play
Torg et. al. JBJS 2002

• Absolute contraindication
 – CNN with instability, symptoms > 36 hrs.,
 and/or more than one episode
 – CNN with cord defect or cord edema
Transient Quadriparesis
Return to Play

• Is there a risk of permanent spinal cord injury following TQ?

• How should a team physician counsel a player:
 – with TQ and normal work-up?
 – with TQ and cervical disc herniation?
 – with TQ and spinal stenosis?
 – with TQ who is a high school athlete?
If this was your son or daughter?
Return to Sport After Cervical Injury

Brigham 2003

• Professional football player - 1998
 – Lhermitte’s sign
 – Neck flexion
 – Spear tackle
Return to Sport After Cervical Injury

Brigham 2003

• Tackling 2000
 – Burning 4 extremities
 – Persistent upper extremity dysesthesias
 – C6 Radiculopathy
Return to Sport After Cervical Injury
Brigham 2003

• 3 Months
 – Burning C6
 – LE parasthesias