Evaluation and Management of Low Back Pain in the Adolescent

Michael C. Koester, MD, ATC
January 31st, 2011
Chair, NFHS Sports Medicine Advisory Committee
Chair, OSAA Medical Aspects of Sports Committee
Director, Slocum Sports Concussion Program
Slocum Center for Orthopedics and Sports Medicine
Eugene, OR
Nothing to Disclose
Low Back Pain

- Common in adults
- Uncommon in children
 - Think bad!!
 - Anecdotal medicine for me

- Adolescents
 - Up to 40% of teens
 - 10% affecting quality of life scores
 - Arch Peds 2009
 - Evaluation depends upon history and activity level
Low back pain

- 14 year old boy
 - Sedentary
 - Worse with sitting
 - Night pain?
 - Neuro?

- Exam
 - Neuro, extension, hamstrings, cutaneous abnormalities

- Imaging
 - Plain films- 2V

- Treatment
 - PT
 - Ice/Heat/Analgesics/Home program
Low back pain

- 15 yo female gymnast with back pain x 2 months
 - Worse with running
 - Occ pain at school

- Diff dx:
 - Disc
 - “mechanical” LBP
 - Spondy
 - Sacral stress fx
 - Tumor
 - Kidney/GYN
Low back pain

- History
 - Sudden onset
 - Increase with activity

- Phys exam:
 - Tight hams
 - Pain with ext both standing and prone
 - Tender over L5
Low back pain

- Diagnostic Testing?
 - Plain films - 2V vs 5V
 - MRI
 - SPECT
 - CT
Spondylolysis

- Fracture of the pars interarticularis
- Common injury in adolescent athletes
 - Acute vs. chronic
- Difficult to diagnose, explain and treat!!
Spondylolysis

- Cause of back pain in 50% of adolescent athletes- Micheli and Wood, 1995.
- Stork test- 50% sens/spec- Masci et al 2006.
Spondylolysis- Imaging

- Plain films 30-40% sensitive, no advantage to obliques
- 39 of 40 lesions seen on MRI that were seen on CT and SPECT but only 29 of 40 graded correctly- Campbell et al, 2005.
- 20% of lesions missed on MRI compared to SPECT- Masci et al, 2006.
- Approx 80% at L5
Spondylolysis- Management

- **Treatment**
 - Brace or no brace?
 - Activity restriction

- **Bracing Biomechanics**
 - Many patients showed *increased* intervertebral motion- Calmels and ayolle-Mignon, 1996.
Outcomes

- What are we trying to achieve?
- Pain-free activity, bone healing, or both?

Meta-analysis- JPO, 2009

- 83.9% treatment success- no difference between bracing and not bracing (no Level 1 evidence)
- Healing depends upon stage and uni or bi
 - 71% unilateral
 - 18% bilateral
 - Acute- 68%
 - Progressive- 28%
 - Terminal- 0
What I do- ABM

- **SPECT and CT**
 - 1. If positive SPECT, neg CT- PT and no sports x 12 weeks
 - 2. If positive SPECT, pos CT- same, unless shows more sclerotic lesion may RTP earlier if no pain
 - 3. If neg SPECT, pos CT- PT and sports depending upon pain
 - 4. If neg SPECT, neg CT- PT and sports depending upon pain

 If still having pain after 6 weeks PT- consider brace in 1 and 2, MR in 3 and 4.

 If still having pain after 12 weeks PT- consider bone stim in 1 and 2, ref to physiatrist in 3 and 4- is that the pain source?

 No follow-up imaging if asymptomatic
Spondylololysthesis

- May be incidental finding
- Treat Grade 1 and 2 similar to spondylolysis
- No pain=no slip
- Beware lesions above and below
Upper back pain

- Most commonly seen in pre-adolescent and adolescent girls
 - Upper trap
 - Low trap/rhomboid

- Exam
 - Tender/knotted muscles, tender coracoid process
 - Scap winging?

- Imaging
 - Often none

- Posture, posture, posture
 - PT
 - Posture cues
 - Patience
Conclusion

- Eval and management varies greatly between athletes and non-athletes
- Early imaging leads to proper diagnosis and active management
- Long-term benefits not completely certain at this point
- Delay imaging in the non-athlete unless worrisome symptoms or exam findings
Thank you all very much!!!!!!

michael.koester@slocumcenter.com

Cell 541-359-5936