Clindamycin-Tretinoin

Skip to the navigation

Drug Information

Summary of Interactions with Vitamins, Herbs, & Foods

Types of interactions: Beneficial Adverse Check

Replenish Depleted Nutrients

  • Folic Acid

    Tetracycline can interfere with the activity of folic acid, potassium, and vitamin B2, vitamin B6, vitamin B12, vitamin C, and vitamin K.1 This is generally not a problem when taking tetracycline for two weeks or less. People taking tetracycline for longer than two weeks should ask their doctor about vitamin and mineral supplementation. Taking 500 mg vitamin C simultaneously with tetracycline was shown to increase blood levels of tetracycline in one study.2 The importance of this interaction is unknown.

    Taking large amounts of niacinamide, a form of vitamin B3, can suppress inflammation in the body. According to numerous preliminary reports, niacinamide, given in combination with tetracycline or minocycline, may be effective against bullous pemphigoid, a benign, autoimmune blistering disease of the skin.3 , 4 , 5 , 6 , 7 , 8 , 9 Preliminary evidence also suggests a similar beneficial interaction may exist between tetracycline and niacinamide in the treatment of dermatitis herpetiformis.10 , 11

  • Magnesium and Potassium

    The chemotherapy drug cisplatin may cause excessive loss of magnesium and potassium in the urine.23 , 24 Preliminary reports suggest that both potassium and magnesium supplementation may be necessary to increase low potassium levels.25 , 26 Severe magnesium deficiency caused by cisplatin therapy has been reported to result in seizures.27 Severe magnesium deficiency is a potentially dangerous medical condition that should only be treated by a doctor. People receiving cisplatin chemotherapy should ask their prescribing doctor to closely monitor magnesium and potassium status.

  • Potassium

    Tetracycline can interfere with the activity of folic acid, potassium, and vitamin B2, vitamin B6, vitamin B12, vitamin C, and vitamin K.33 This is generally not a problem when taking tetracycline for two weeks or less. People taking tetracycline for longer than two weeks should ask their doctor about vitamin and mineral supplementation. Taking 500 mg vitamin C simultaneously with tetracycline was shown to increase blood levels of tetracycline in one study.34 The importance of this interaction is unknown.

    Taking large amounts of niacinamide, a form of vitamin B3, can suppress inflammation in the body. According to numerous preliminary reports, niacinamide, given in combination with tetracycline or minocycline, may be effective against bullous pemphigoid, a benign, autoimmune blistering disease of the skin.35 , 36 , 37 , 38 , 39 , 40 , 41 Preliminary evidence also suggests a similar beneficial interaction may exist between tetracycline and niacinamide in the treatment of dermatitis herpetiformis.42 , 43

  • Vitamin B12

    Neomycin can decrease absorption or increase elimination of many nutrients, including calcium, carbohydrates, beta-carotene, fats, folic acid, iron, magnesium, potassium, sodium, and vitamin A, vitamin B12, vitamin D, and vitamin K.55 , 56 Surgery preparation with oral neomycin is unlikely to lead to deficiencies. It makes sense for people taking neomycin for more than a few days to also take a multivitamin-mineral supplement.

  • Vitamin B2

    Tetracycline can interfere with the activity of folic acid, potassium, and vitamin B2, vitamin B6, vitamin B12, vitamin C, and vitamin K.59 This is generally not a problem when taking tetracycline for two weeks or less. People taking tetracycline for longer than two weeks should ask their doctor about vitamin and mineral supplementation. Taking 500 mg vitamin C simultaneously with tetracycline was shown to increase blood levels of tetracycline in one study.60 The importance of this interaction is unknown.

  • Vitamin K

    Several cases of excessive bleeding have been reported in people who take antibiotics.63 , 64 , 65 , 66 This side effect may be the result of reduced vitamin K activity and/or reduced vitamin K production by bacteria in the colon. One study showed that people who had taken broad-spectrum antibiotics had lower liver concentrations of vitamin K2 (menaquinone), though vitamin K1 (phylloquinone) levels remained normal.67 Several antibiotics appear to exert a strong effect on vitamin K activity, while others may not have any effect. Therefore, one should refer to a specific antibiotic for information on whether it interacts with vitamin K. Doctors of natural medicine sometimes recommend vitamin K supplementation to people taking antibiotics. Additional research is needed to determine whether the amount of vitamin K1 found in some multivitamins is sufficient to prevent antibiotic-induced bleeding. Moreover, most multivitamins do not contain vitamin K.

  • Lactobacillus GG

    In a preliminary trial, supplementation with a probiotic (Lactobacillus GG) reduced the frequency of severe diarrhea and the incidence of abdominal discomfort related to the use of 5-FU. The amount of Lactobacillus GG used was 10-20 billion organisms per day during the 24 weeks of chemotherapy.73

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • N-Acetyl Cysteine

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C appears to increase the effectiveness of chemotherapy in animals and with human breast cancer cells in test tube research.75 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.76

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but it clearly shows that antioxidants need not be avoided for fear that the actions of chemotherapy are interfered with.77 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Spleen Peptide Extract

    Patients with inoperable head and neck cancer were treated with a spleen peptide preparation (Polyerga) in a double-blind trial during chemotherapy with cisplatin and 5-FU.81 The spleen preparation had a significant stabilizing effect on certain white blood cells. People taking it also experienced stabilized body weight and a reduction in the fatigue and inertia that usually accompany this combination of chemotherapy agents.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Taurine

    Taurine has been shown to be depleted in people taking chemotherapy.83 It remains unclear how important this effect is or if people taking chemotherapy should take taurine supplements.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Reduce Side Effects

  • Acetyl-L-Carnitine

    Acetyl-L-carnitine in the amount of 1,000 mg three times per day for eight weeks has been shown to improve nerve damage (neuropathy) caused by the chemotherapy drug cisplatin.85

  • Calcium and Magnesium
    In a double-blind trial, intravenous administration of calcium and magnesium before and after administration of oxaliplatin prevented the development of oxaliplatin-induced nerve damage.87 However, in another double-blind trial, the same treatment regimen as in the other study did not prevent oxaliplatin-induced nerve damage.88 It is not known whether oral administration of these minerals would also be beneficial.
  • Ginger

    Ginger (Zingiber officinale) can be helpful in alleviating nausea and vomiting caused by chemotherapy.91 , 92 Ginger, as tablets, capsules, or liquid herbal extracts, can be taken in 500 mg amounts every two or three hours, for a total of 1 gram per day.

  • Glutamine

    Though cancer cells use glutamine as a fuel source, studies in humans have not found that glutamine stimulates growth of cancers in people taking chemotherapy.95 , 96 In fact, animal studies show that glutamine may actually decrease tumor growth while increasing susceptibility of cancer cells to radiation and chemotherapy,97 , 98 though such effects have not yet been studied in humans.

    Glutamine has successfully reduced chemotherapy-induced mouth sores. In one trial, people were given 4 grams of glutamine in an oral rinse, which was swished around the mouth and then swallowed twice per day.99 Thirteen of fourteen people in the study had fewer days with mouth sores as a result. These excellent results have been duplicated in some,100 but not all101 double-blind research. In another study, patients receiving high-dose paclitaxel and melphalan had significantly fewer episodes of oral ulcers and bleeding when they took 6 grams of glutamine four times daily along with the chemotherapy.102

    One double-blind trial suggested that 6 grams of glutamine taken three times per day can decrease diarrhea caused by chemotherapy.103 However, other studies using higher amounts or intravenous glutamine have not reported this effect.104 , 105

    Intravenous use of glutamine in people undergoing bone marrow transplants, a procedure sometimes used to allow very high amounts of chemotherapy to be used, has led to reduced hospital stays, leading to a savings of over $21,000 for each patient given glutamine.106

    In a double-blind study, supplementation with 18 grams of glutamine per day for 15 days, starting five days before the beginning of 5-FU therapy, significantly reduced the severity of drug-induced intestinal toxicity.107

    Intravenous use of glutamine in people undergoing bone marrow transplants, a procedure sometimes used to allow very high amounts of chemotherapy to be used, has led to reduced hospital stays, leading to a savings of over $21,000 for each patient given glutamine.108

  • Glutathione

    High-dose cisplatin chemotherapy is associated with kidney toxicity and damage, which may be reduced by glutathione administration.123 , 124 , 125 , 126 Nerve damage is another frequent complication of high amounts of cisplatin. Preliminary evidence has shown that glutathione injections may protect nerve tissue during cisplatin therapy without reducing cisplatin’s anti-tumor activity.127 , 128 , 129 There is no evidence that glutathione taken by mouth has the same benefits.

  • Melatonin

    Melatonin supplementation (20 mg per day) has decreased toxicity and improved effectiveness of chemotherapy with cisplatin plus etoposide and cisplatin plus 5-FU.137

  • Probiotics

    In a preliminary trial, supplementation with a probiotic (Lactobacillus GG) reduced the frequency of severe diarrhea and the incidence of abdominal discomfort related to the use of 5-FU. The amount of Lactobacillus GG used was 10-20 billion organisms per day during the 24 weeks of chemotherapy.139

  • Selenium

    In one human study, administration of 4,000 mcg per day of a selenium product, Seleno-Kappacarrageenan, reduced the kidney damage and white blood cell–lowering effects of the chemotherapy drug cisplatin.141 The amount of selenium used in this study is potentially toxic and should only be used under the supervision of a doctor. In another study, patients being treated with cisplatin and cyclophosphamide for ovarian cancer were given a multivitamin preparation, with or without 200 mcg of selenium per day. Compared with the group not receiving selenium, those receiving selenium had a smaller reduction in white blood cell count and fewer chemotherapy side effects such as nausea, hair loss, weakness, and loss of appetite.142

  • Spleen Peptide Extract

    Patients with inoperable head and neck cancer were treated with a spleen peptide preparation (Polyerga) in a double-blind trial during chemotherapy with cisplatin and 5-FU.145 The spleen preparation had a significant stabilizing effect on certain white blood cells. People taking it also experienced stabilized body weight and a reduction in the fatigue and inertia that usually accompany this combination of chemotherapy agents.

  • Vitamin C

    Tooth discoloration is a side effect of minocycline observed primarily in young children, but it may occur in adults as well. Vitamin C supplementation may prevent staining in adults taking minocycline.147

  • Wheat Grass

    In a preliminary trial, taking wheat grass in the amount of 60 ml (about 2 ounces) per day during chemotherapy reduced the incidence of certain chemotherapy-related side effects (including anemia and a decline in white blood cell counts) in women with breast cancer. Taking wheat grass did not appear to interfere with the anticancer effect of the chemotherapy. The chemotherapy used in this study was a combination of 5-fluorouracil, doxorubicin, and cyclophosphamide.149

  • Brewer’s Yeast

    A common side effect of antibiotics is diarrhea, which may be caused by the elimination of beneficial bacteria normally found in the colon. Controlled studies have shown that taking probiotic microorganisms—such as Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium longum, or Saccharomyces boulardii—helps prevent antibiotic-induced diarrhea.151

    The diarrhea experienced by some people who take antibiotics also might be due to an overgrowth of the bacterium Clostridium difficile, which causes a disease known as pseudomembranous colitis. Controlled studies have shown that supplementation with harmless yeast—such as Saccharomyces boulardii 152 or Saccharomyces cerevisiae (baker’s or brewer’s yeast)153—helps prevent recurrence of this infection. In one study, taking 500 mg of Saccharomyces boulardii twice daily enhanced the effectiveness of the antibiotic vancomycin in preventing recurrent clostridium infection.154 Therefore, people taking antibiotics who later develop diarrhea might benefit from supplementing with saccharomyces organisms.

    Treatment with antibiotics also commonly leads to an overgrowth of yeast (Candida albicans) in the vagina (candida vaginitis) and the intestines (sometimes referred to as “dysbiosis”). Controlled studies have shown that Lactobacillus acidophilus might prevent candida vaginitis.155

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Support Medicine

  • Bromelain

    When taken with amoxicillin, bromelain was shown to increase absorption of amoxicillin in humans.169 When 80 mg of bromelain was taken together with amoxicillin and tetracycline, blood levels of both drugs increased, though how bromelain acts on drug metabolism remains unknown.170 An older report found bromelain also increased the actions of other antibiotics, including penicillin, chloramphenicol, and erythromycin, in treating a variety of infections. In that trial, 22 out of 23 people who had previously not responded to these antibiotics did so after adding bromelain taken four times per day.171

    Doctors will sometimes prescribe enough bromelain to equal 2,400 gelatin dissolving units (listed as GDU on labels) per day. This amount would equal approximately 3,600 MCU (milk clotting units), another common measure of bromelain activity.

  • Milk Thistle

    Milk thistle’s (Silybum marianum) major flavonoids, known collectively as silymarin, have shown synergistic actions with the chemotherapy drugs cisplatin and doxorubicin (Adriamycin) in test tubes.175 Silymarin also offsets the kidney toxicity of cisplatin in animals.176 Silymarin has not yet been studied in humans treated with cisplatin. There is some evidence that silymarin may not interfere with some chemotherapy in humans with cancer.177

  • Thymus Extracts

    Peptides or short proteins derived from the thymus gland, an important immune organ, have been used in conjunction with chemotherapy drugs for people with cancer. One study using thymosin fraction V in combination with chemotherapy, compared with chemotherapy alone, found significantly longer survival times in the thymosin fraction V group.181 A related substance, thymostimulin, decreased some side effects of chemotherapy and increased survival time compared with chemotherapy alone.182 A third product, thymic extract TP1, was shown to improve immune function in people treated with chemotherapy compared with effects of chemotherapy alone.183 Thymic peptides need to be administered by injection. People interested in their combined use with chemotherapy should consult a doctor.

  • Wheat Grass

    In a preliminary trial, taking wheat grass in the amount of 60 ml (about 2 ounces) per day during chemotherapy reduced the incidence of certain chemotherapy-related side effects (including anemia and a decline in white blood cell counts) in women with breast cancer. Taking wheat grass did not appear to interfere with the anticancer effect of the chemotherapy. The chemotherapy used in this study was a combination of 5-fluorouracil, doxorubicin, and cyclophosphamide.187

  • Probiotics
    In one study, taking 500 mg of Saccharomyces boulardii twice daily enhanced the effectiveness of the antibiotic vancomycin in preventing recurrent clostridium infection.189 Therefore, people taking antibiotics who later develop diarrhea might benefit from supplementing with saccharomyces organisms.
    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Reduces Effectiveness

  • Khat

    Khat (Catha edulis) is an herb found in East Africa and Yemen that has recently been imported into the United States. Studies have shown that chewing khat significantly reduces the absorption of ampicillin,191 which might reduce the effectiveness of the antibiotic. Therefore, people taking ampicillin should avoid herbal products that contain khat.

  • Magnesium

    Taking calcium, iron, magnesium, or zinc at the same time as minocycline can decrease the absorption of both the drug193 , 194 and the mineral. Therefore, calcium, iron, magnesium, or zinc supplements, if used, should be taken an hour before or after the drug.

  • Zinc

    Taking calcium, iron, magnesium, or zinc at the same time as minocycline can decrease the absorption of both the drug197 , 198 and the mineral. Therefore, calcium, iron, magnesium, or zinc supplements, if used, should be taken an hour before or after the drug.

Potential Negative Interaction

  • Vitamin A

    Large amounts of vitamin A can cause side effects, and oral tretinoin can cause similar side effects. Combining vitamin A with oral tretinoin is likely to increase the risk of side effects. People taking oral tretinoin should probably not take more than 10,000 IU of supplemental vitamin A per day.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Explanation Required 

  • Barberry

    Berberine is a chemical extracted from goldenseal (Hydrastis canadensis), barberry (Berberis vulgaris), and Oregon grape (Berberis aquifolium), which has antibacterial activity. However, one double-blind study found that 100 mg berberine given with tetracycline (a drug closely related to doxycycline) reduced the efficacy of tetracycline in people with cholera.201 In that trial, berberine may have decreased tetracycline absorption. Another double-blind trial found that berberine neither improved nor interfered with tetracycline effectiveness in cholera patients.202 Therefore, it remains unclear whether a significant interaction between berberine-containing herbs and doxycycline and related drugs exists.

  • Vitamin A

    A controlled French trial reported that when postmenopausal late-stage breast cancer patients were given very large amounts of vitamin A (350,000–500,000 IU per day) along with chemotherapy, remission rates were significantly better than when the chemotherapy was not accompanied by vitamin A.205 Similar results were not found in premenopausal women. The large amounts of vitamin A used in the study are toxic and require clinical supervision.

  • Antioxidants

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.207 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research.208 Vitamin C appears to increase the effectiveness of chemotherapy in animals209 and with human breast cancer cells in test tube research.210 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.211

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.212 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Echinacea

    Echinacea is a popular immune-boosting herb that has been investigated for use with chemotherapy. One study investigated the actions of cyclophosphamide, echinacea, and thymus gland extracts to treat advanced cancer patients. Although small and uncontrolled, this trial suggested that the combination modestly extended the life span of some patients with inoperable cancers.219 Signs of restoration of immune function were seen in these patients.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • N-Acetyl Cysteine

    NAC, an amino acid-like supplement that possesses antioxidant activity, has been used in four human studies to decrease the kidney and bladder toxicity of the chemotherapy drug ifosfamide.221 , 222 , 223 , 224 These studies used 1–2 grams NAC four times per day. Th+N110ere was no sign that NAC interfered with the efficacy of ifosfamide in any of these studies. Intakes of NAC over 4 grams per day may cause nausea and vomiting.

    The newer anti-nausea drugs prescribed for people taking chemotherapy lead to greatly reduced nausea and vomiting for most people. Nonetheless, these drugs often do not totally eliminate all nausea. Natural substances used to reduce nausea should not be used instead of prescription anti-nausea drugs. Rather, under the guidance of a doctor, they should be added to those drugs if needed. At least one trial suggests that NAC at 1,800 mg per day may reduce nausea and vomiting caused by chemotherapy.225

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C appears to increase the effectiveness of chemotherapy in animals and with human breast cancer cells in test tube research.226 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.227

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.228 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin A, Vitamin C, and N-Acetyl Cysteine

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.237 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research.238 Vitamin C appears to increase the effectiveness of chemotherapy in animals239 and with human breast cancer cells in test tube research.240 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.241

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.242 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin C

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.249 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C combined with Vitamin K3 appears to increase the effectiveness of chemotherapy in animals250 and with human breast cancer cells in test tube research.251 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.252

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but it clearly shows that antioxidants need not be avoided for fear that the actions of chemotherapy are interfered with.253 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin K

    Several cases of excessive bleeding have been reported in people who take antibiotics.259 , 260 , 261 , 262 This side effect may be the result of reduced vitamin K activity and/or reduced vitamin K production by bacteria in the colon. One study showed that people who had taken broad-spectrum antibiotics had lower liver concentrations of vitamin K2 (menaquinone), though vitamin K1 (phylloquinone) levels remained normal.263 Several antibiotics appear to exert a strong effect on vitamin K activity, while others may not have any effect. Therefore, one should refer to a specific antibiotic for information on whether it interacts with vitamin K. Doctors of natural medicine sometimes recommend vitamin K supplementation to people taking antibiotics. Additional research is needed to determine whether the amount of vitamin K1 found in some multivitamins is sufficient to prevent antibiotic-induced bleeding. Moreover, most multivitamins do not contain vitamin K.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
The Drug-Nutrient Interactions table may not include every possible interaction. Taking medicines with meals, on an empty stomach, or with alcohol may influence their effects. For details, refer to the manufacturers’ package information as these are not covered in this table. If you take medications, always discuss the potential risks and benefits of adding a new supplement with your doctor or pharmacist.

References

1. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

2. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

3. Yomoda M, Komai A, Hasimoto T. Sublamina densa-type linear IgA bullous dermatosis successfully treated with oral tetracycline and niacinamide. Br J Dermatol 1999;141:608-9.

4. Dragan L, Eng AM, Lam S, Persson T. Tetracycline and niacinamide: treatment alternatives in ocular cicatricial pemphigoid. Cutis 1999;63:181-3.

5. Berk MA, Lorincz AL. The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report. Arch Dermatol 1986;122:670-4.

6. Kawahara Y, Hashimoto T, Ohata K, Nishikawa T. Eleven cases of bullous pemphigoid treated with combination of minocycline and nicotinamide. Eur J Dermatol 1996;6:427-9.

7. Reiche L, Wojnarowska F, Mallon E. Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid; further support for its efficacy. Clin Exp Dermatol 1998;23:254-7.

8. Peoples D, Fivenson DP. Linear IgA bullous dermatosis: successful treatment with tetracycline and nicotinamide. J Am Acad Dermatol 1992;26:498-9.

9. Chaffins ML, Collison D, Fivenson DP. Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J Am Acad Dermatol 1993;28:998-1000.

10. Shah SA, Ormerod AD. Dermatitis herpetiformis effectively treated with heparin, tetracycline and nicotinamide. Clin Exp Dermatol 2000;25:204-5.

11. Zemtsov A, Neldner KH. Successful treatment of dermatitis herpetiformis with tetracycline and nicotinamide in a patient unable to tolerate dapsone. J Am Acad Dermatol 1993;28:505-6.

12. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

13. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

14. Yomoda M, Komai A, Hasimoto T. Sublamina densa-type linear IgA bullous dermatosis successfully treated with oral tetracycline and niacinamide. Br J Dermatol 1999;141:608-9.

15. Dragan L, Eng AM, Lam S, Persson T. Tetracycline and niacinamide: treatment alternatives in ocular cicatricial pemphigoid. Cutis 1999;63:181-3.

16. Berk MA, Lorincz AL. The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report. Arch Dermatol 1986;122:670-4.

17. Kawahara Y, Hashimoto T, Ohata K, Nishikawa T. Eleven cases of bullous pemphigoid treated with combination of minocycline and nicotinamide. Eur J Dermatol 1996;6:427-9.

18. Reiche L, Wojnarowska F, Mallon E. Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid; further support for its efficacy. Clin Exp Dermatol 1998;23:254-7.

19. Peoples D, Fivenson DP. Linear IgA bullous dermatosis: successful treatment with tetracycline and nicotinamide. J Am Acad Dermatol 1992;26:498-9.

20. Chaffins ML, Collison D, Fivenson DP. Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J Am Acad Dermatol 1993;28:998-1000.

21. Shah SA, Ormerod AD. Dermatitis herpetiformis effectively treated with heparin, tetracycline and nicotinamide. Clin Exp Dermatol 2000;25:204-5.

22. Zemtsov A, Neldner KH. Successful treatment of dermatitis herpetiformis with tetracycline and nicotinamide in a patient unable to tolerate dapsone. J Am Acad Dermatol 1993;28:505-6.

23. Buckley JE, Clark VL, Meyer TJ, Pearlman NW. Hypomagnesemia after cisplatin combination chemotherapy. Arch Intern Med 1984;144:2347.

24. Threlkeld DS, ed. Antineoplastics, alkylating agents, cisplatin (CDDP). In Facts and Comparisons Drug Information. St. Louis, MO: Facts and Comparisons, Feb 1999, 652a-2d.

25. Rodriguez M, Solanki DL, Whang R. Refractory potassium repletion due to Cisplatin-induced magnesium depletion. Arch Intern Med 1989;149:2592-4.

26. Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med 1992;152:40-5.

27. van de Loosdrecht AA, Gietema JA, van der Graaf WT. Seizures in a patient with disseminated testicular cancer due to cisplatin-induced hypomagnesaemia. Acta Oncol 2000;39:239-40.

28. Buckley JE, Clark VL, Meyer TJ, Pearlman NW. Hypomagnesemia after cisplatin combination chemotherapy. Arch Intern Med 1984;144:2347.

29. Threlkeld DS, ed. Antineoplastics, alkylating agents, cisplatin (CDDP). In Facts and Comparisons Drug Information. St. Louis, MO: Facts and Comparisons, Feb 1999, 652a-2d.

30. Rodriguez M, Solanki DL, Whang R. Refractory potassium repletion due to Cisplatin-induced magnesium depletion. Arch Intern Med 1989;149:2592-4.

31. Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med 1992;152:40-5.

32. van de Loosdrecht AA, Gietema JA, van der Graaf WT. Seizures in a patient with disseminated testicular cancer due to cisplatin-induced hypomagnesaemia. Acta Oncol 2000;39:239-40.

33. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

34. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

35. Yomoda M, Komai A, Hasimoto T. Sublamina densa-type linear IgA bullous dermatosis successfully treated with oral tetracycline and niacinamide. Br J Dermatol 1999;141:608-9.

36. Dragan L, Eng AM, Lam S, Persson T. Tetracycline and niacinamide: treatment alternatives in ocular cicatricial pemphigoid. Cutis 1999;63:181-3.

37. Berk MA, Lorincz AL. The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report. Arch Dermatol 1986;122:670-4.

38. Kawahara Y, Hashimoto T, Ohata K, Nishikawa T. Eleven cases of bullous pemphigoid treated with combination of minocycline and nicotinamide. Eur J Dermatol 1996;6:427-9.

39. Reiche L, Wojnarowska F, Mallon E. Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid; further support for its efficacy. Clin Exp Dermatol 1998;23:254-7.

40. Peoples D, Fivenson DP. Linear IgA bullous dermatosis: successful treatment with tetracycline and nicotinamide. J Am Acad Dermatol 1992;26:498-9.

41. Chaffins ML, Collison D, Fivenson DP. Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J Am Acad Dermatol 1993;28:998-1000.

42. Shah SA, Ormerod AD. Dermatitis herpetiformis effectively treated with heparin, tetracycline and nicotinamide. Clin Exp Dermatol 2000;25:204-5.

43. Zemtsov A, Neldner KH. Successful treatment of dermatitis herpetiformis with tetracycline and nicotinamide in a patient unable to tolerate dapsone. J Am Acad Dermatol 1993;28:505-6.

44. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

45. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

46. Yomoda M, Komai A, Hasimoto T. Sublamina densa-type linear IgA bullous dermatosis successfully treated with oral tetracycline and niacinamide. Br J Dermatol 1999;141:608-9.

47. Dragan L, Eng AM, Lam S, Persson T. Tetracycline and niacinamide: treatment alternatives in ocular cicatricial pemphigoid. Cutis 1999;63:181-3.

48. Berk MA, Lorincz AL. The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report. Arch Dermatol 1986;122:670-4.

49. Kawahara Y, Hashimoto T, Ohata K, Nishikawa T. Eleven cases of bullous pemphigoid treated with combination of minocycline and nicotinamide. Eur J Dermatol 1996;6:427-9.

50. Reiche L, Wojnarowska F, Mallon E. Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid; further support for its efficacy. Clin Exp Dermatol 1998;23:254-7.

51. Peoples D, Fivenson DP. Linear IgA bullous dermatosis: successful treatment with tetracycline and nicotinamide. J Am Acad Dermatol 1992;26:498-9.

52. Chaffins ML, Collison D, Fivenson DP. Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J Am Acad Dermatol 1993;28:998-1000.

53. Shah SA, Ormerod AD. Dermatitis herpetiformis effectively treated with heparin, tetracycline and nicotinamide. Clin Exp Dermatol 2000;25:204-5.

54. Zemtsov A, Neldner KH. Successful treatment of dermatitis herpetiformis with tetracycline and nicotinamide in a patient unable to tolerate dapsone. J Am Acad Dermatol 1993;28:505-6.

55. Roe DA. Drug-Induced Nutritional Deficiencies, 2d ed. Westport, CT: Avi Publishing, 1985, 157-8 [review].

56. Holt GA. Food & Drug Interactions. Chicago: Precept Press,1998, 183.

57. Roe DA. Drug-Induced Nutritional Deficiencies, 2d ed. Westport, CT: Avi Publishing, 1985, 157-8 [review].

58. Holt GA. Food & Drug Interactions. Chicago: Precept Press,1998, 183.

59. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

60. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

61. Holt GA. Food & Drug Interactions. Chicago: Precept Press, 1998, 256-8.

62. Freinberg N, Lite T. Adjunctive ascorbic acid administration in antibiotic therapy. J Dent Res 1957;36:260-2.

63. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292-4.

64. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706-7.

65. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610-2.

66. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524-5.

67. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531-9.

68. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292-4.

69. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706-7.

70. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610-2.

71. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524-5.

72. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531-9.

73. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

74. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

75. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

76. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

77. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

78. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

79. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

80. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

81. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

82. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

83. Desai TK, Maliakkal J, Kinzie JL, et al. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992;55:708-11.

84. Desai TK, Maliakkal J, Kinzie JL, et al. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992;55:708-11.

85. Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005;41:1746-50.

86. Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005;41:1746-50.

87. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421-7.

88. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol2013 Dec 2 [Epub ahead of print].

89. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421-7.

90. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol2013 Dec 2 [Epub ahead of print].

91. Meyer K, Schwartz J, Crater D, Keyes B. Zingiber officinale (ginger) used to prevent 8-Mop associated nausea. Dermatol Nurs 1995;7:242-4.

92. Pace JC. Oral ingestion of encapsulated ginger and reported self care actions for the relief of chemotherapy-associated nausea and vomiting. Dissertation Abstr Int 1987;8:3297.

93. Meyer K, Schwartz J, Crater D, Keyes B. Zingiber officinale (ginger) used to prevent 8-Mop associated nausea. Dermatol Nurs 1995;7:242-4.

94. Pace JC. Oral ingestion of encapsulated ginger and reported self care actions for the relief of chemotherapy-associated nausea and vomiting. Dissertation Abstr Int 1987;8:3297.

95. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

96. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

97. Klimberg VS, McClellan JL. Glutamine, cancer, and its therapy. Am J Surg 1996;172:418-24.

98. Souba WW. Glutamine and cancer. Ann Surg 1993;218:715-28 [review].

99. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis: a pilot study. J Lab Clin Med 1996;127:223-8.

100. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer 1998;83:1433-9.

101. Okuno SH, Woodhouse CO, Loprinzi CL, et al. Phase III controlled evaluation of glutamine for decreasing stomatitis in patients receiving fluorouracil (5-FU)-based chemotherapy. Am J Clin Oncol 1999;22:258-61.

102. Cockerham MB, Weinberger BB, Lerchie SB. Oral glutamine for the prevention of oral mucositis associated with high-dose paclitaxel and melphalan for autologous bone marrow transplantation. Ann Pharmacother 2000;34:300-3.

103. Muscaritoli M, Micozzi A, Conversano L, et al. Oral glutamine in the prevention of chemotherapy-induced gastrointestinal toxicity Eur J Cancer 1997;33:319-20.

104. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

105. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

106. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

107. Daniele B, Perrone F, Gallo C, et al. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut 2001;48:28-33.

108. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

109. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

110. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

111. Klimberg VS, McClellan JL. Glutamine, cancer, and its therapy. Am J Surg 1996;172:418-24.

112. Souba WW. Glutamine and cancer. Ann Surg 1993;218:715-28 [review].

113. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis: a pilot study. J Lab Clin Med 1996;127:223-8.

114. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer 1998;83:1433-9.

115. Okuno SH, Woodhouse CO, Loprinzi CL, et al. Phase III controlled evaluation of glutamine for decreasing stomatitis in patients receiving fluorouracil (5-FU)-based chemotherapy. Am J Clin Oncol 1999;22:258-61.

116. Cockerham MB, Weinberger BB, Lerchie SB. Oral glutamine for the prevention of oral mucositis associated with high-dose paclitaxel and melphalan for autologous bone marrow transplantation. Ann Pharmacother 2000;34:300-3.

117. Muscaritoli M, Micozzi A, Conversano L, et al. Oral glutamine in the prevention of chemotherapy-induced gastrointestinal toxicity Eur J Cancer 1997;33:319-20.

118. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

119. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

120. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

121. Daniele B, Perrone F, Gallo C, et al. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut 2001;48:28-33.

122. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

123. Fontanelli R, Spatti G, Raspagliesi F, et al. A preoperative single course of high-dose cisplatin and bleomycin with glutathione protection in bulky stage IB/II carcinoma of the cervix. Ann Oncol 1992;3:117-21.

124. Plaxe S, Freddo J, Kim S, et al. Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol 1994;55:82-6.

125. Di Re F, Bohm S, Oriana S, et al. Efficacy and safety of high-dose cisplatin and cyclophosphamide with glutathione protection in the treatment of bulky advanced epithelial ovarian cancer. Cancer Chemother Pharmacol 1990;25:355-60.

126. Tedeschi M, De Cesare A, Oriana S, et al. The role of glutathione in combination with cisplatin in the treatment of ovarian cancer. Cancer Treat Rev 1991;18:253-9 [review].

127. Smyth JF, Bowman A, Perren T, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: Results of a double-blind, randomised trial. Ann Oncol 1997;8:569-73.

128. Colombo N, Bini S, Miceli D, et al. Weekly cisplatin ± glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995;5:81-6.

129. Cascinu S, Cordella L, Del Ferro E, et al. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol 1995;13:26-32.

130. Fontanelli R, Spatti G, Raspagliesi F, et al. A preoperative single course of high-dose cisplatin and bleomycin with glutathione protection in bulky stage IB/II carcinoma of the cervix. Ann Oncol 1992;3:117-21.

131. Plaxe S, Freddo J, Kim S, et al. Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol 1994;55:82-6.

132. Di Re F, Bohm S, Oriana S, et al. Efficacy and safety of high-dose cisplatin and cyclophosphamide with glutathione protection in the treatment of bulky advanced epithelial ovarian cancer. Cancer Chemother Pharmacol 1990;25:355-60.

133. Tedeschi M, De Cesare A, Oriana S, et al. The role of glutathione in combination with cisplatin in the treatment of ovarian cancer. Cancer Treat Rev 1991;18:253-9 [review].

134. Smyth JF, Bowman A, Perren T, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: Results of a double-blind, randomised trial. Ann Oncol 1997;8:569-73.

135. Colombo N, Bini S, Miceli D, et al. Weekly cisplatin ± glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995;5:81-6.

136. Cascinu S, Cordella L, Del Ferro E, et al. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol 1995;13:26-32.

137. Lissoni P, Barni S, Mandalà, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer 1999;35:1688-92.

138. Lissoni P, Barni S, Mandalà, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer 1999;35:1688-92.

139. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

140. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

141. Hu Y-J, Chen Y, Zhang Y-Q, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997;56:331-41.

142. Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 2004;93:320-7.

143. Hu Y-J, Chen Y, Zhang Y-Q, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997;56:331-41.

144. Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 2004;93:320-7.

145. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

146. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

147. Cheek CC, Heymann HO. Dental and oral discolorations associated with minocycline and other tetracycline analogs. J Esthet Dent 1999;11:43-8.

148. Cheek CC, Heymann HO. Dental and oral discolorations associated with minocycline and other tetracycline analogs. J Esthet Dent 1999;11:43-8.

149. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

150. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

151. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

152. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

153. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer's yeast. Lancet 1994;343:171-2.

154. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981-8.

155. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

156. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

157. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

158. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer's yeast. Lancet 1994;343:171-2.

159. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981-8.

160. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

161. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

162. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

163. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer's yeast. Lancet 1994;343:171-2.

164. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

165. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

166. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

167. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer's yeast. Lancet 1994;343:171-2.

168. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870-6 [review].

169. Tinozzi S, Venegoni A. Effect of bromelain on serum and tissue levels of amoxicillin. Drugs Exp Clin Res 1978;4:39-44.

170. Luerti M, Vignali M. Influence of bromelain on penetration of antibiotics in uterus, salpinx and ovary. Drugs Exp Clin Res 1978;4:45-8.

171. Neubauer RA. A plant protease for potentiation of and possible replacement of antibiotics. Exp Med Surg 1961;19:143-60.

172. Tinozzi S, Venegoni A. Effect of bromelain on serum and tissue levels of amoxicillin. Drugs Exp Clin Res 1978;4:39-44.

173. Luerti M, Vignali M. Influence of bromelain on penetration of antibiotics in uterus, salpinx and ovary. Drugs Exp Clin Res 1978;4:45-8.

174. Neubauer RA. A plant protease for potentiation of and possible replacement of antibiotics. Exp Med Surg 1961;19:143-60.

175. Scambia G, De Vincenzo R, Ranelletti FO, et al. Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer 1996;32A:877-82.

176. Gaedeke J, Fels LM, Bokemeyer C, et al. Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 1996;11:55-62.

177. Invernizzi R, Bernuzzi S, Ciani D, Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haemotologia 1993;78:340-1.

178. Scambia G, De Vincenzo R, Ranelletti FO, et al. Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer 1996;32A:877-82.

179. Gaedeke J, Fels LM, Bokemeyer C, et al. Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 1996;11:55-62.

180. Invernizzi R, Bernuzzi S, Ciani D, Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haemotologia 1993;78:340-1.

181. Cohen MH, Chretien PB, Ihde DC, et al. Thymosin fraction V and intensive combination chemotherapy. Prolonging the survival of patients with small-cell lung cancer. JAMA 1979;241:1813-5.

182. Macchiarini P, Danesi R, Del Tacca M, Angeletti CA. Effects of thymostimulin on chemotherapy-induced toxicity and long-term survival in small cell lung cancer patients. Anticancer Res 1989;9:193-6.

183. Shoham J, Theodor E, Brenner HJ, et al. Enhancement of the immune system of chemotherapy-treated cancer patients by simultaneous treatment with thymic extract, TP-1. Cancer Immunol Immunother 1980;9:173-80.

184. Cohen MH, Chretien PB, Ihde DC, et al. Thymosin fraction V and intensive combination chemotherapy. Prolonging the survival of patients with small-cell lung cancer. JAMA 1979;241:1813-5.

185. Macchiarini P, Danesi R, Del Tacca M, Angeletti CA. Effects of thymostimulin on chemotherapy-induced toxicity and long-term survival in small cell lung cancer patients. Anticancer Res 1989;9:193-6.

186. Shoham J, Theodor E, Brenner HJ, et al. Enhancement of the immune system of chemotherapy-treated cancer patients by simultaneous treatment with thymic extract, TP-1. Cancer Immunol Immunother 1980;9:173-80.

187. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

188. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

189. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981-8.

190. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981-8.

191. Attel OA, Ali AA, Ali HM. Effect of khat chewing on the bioavailability of ampicillin and amoxicillin. J Antimicrob Chemother 1997;39:523-5.

192. Attel OA, Ali AA, Ali HM. Effect of khat chewing on the bioavailability of ampicillin and amoxicillin. J Antimicrob Chemother 1997;39:523-5.

193. Sifton DW, ed. Physicians Desk Reference. Montvale, NJ: Medical Economics Company, Inc., 2000, 1535-7.

194. Brion M, Lambs L, Berthon G. Metal ion-tetracycline interactions in biological fluids. Part 5. Formation of zinc complexes with tetracycline and some of its derivatives and assessment of their biological significance. Agents Actions 1985;17:229-42.

195. Sifton DW, ed. Physicians Desk Reference. Montvale, NJ: Medical Economics Company, Inc., 2000, 1535-7.

196. Brion M, Lambs L, Berthon G. Metal ion-tetracycline interactions in biological fluids. Part 5. Formation of zinc complexes with tetracycline and some of its derivatives and assessment of their biological significance. Agents Actions 1985;17:229-42.

197. Sifton DW, ed. Physicians Desk Reference. Montvale, NJ: Medical Economics Company, Inc., 2000, 1535-7.

198. Brion M, Lambs L, Berthon G. Metal ion-tetracycline interactions in biological fluids. Part 5. Formation of zinc complexes with tetracycline and some of its derivatives and assessment of their biological significance. Agents Actions 1985;17:229-42.

199. Sifton DW, ed. Physicians Desk Reference. Montvale, NJ: Medical Economics Company, Inc., 2000, 1535-7.

200. Brion M, Lambs L, Berthon G. Metal ion-tetracycline interactions in biological fluids. Part 5. Formation of zinc complexes with tetracycline and some of its derivatives and assessment of their biological significance. Agents Actions 1985;17:229-42.

201. Khin-Maung-U, Myo-Khin, Nyunt-Nyunt-Wai, et al. Clinical trial of berberine in acute watery diarrhoea. Br Med J 1985;291:1601-5.

202. Rabbani GH, Butler T, Knight J, et al. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 1987;155:979-84.

203. Khin-Maung-U, Myo-Khin, Nyunt-Nyunt-Wai, et al. Clinical trial of berberine in acute watery diarrhoea. Br Med J 1985;291:1601-5.

204. Rabbani GH, Butler T, Knight J, et al. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 1987;155:979-84.

205. Israel L, Hajji O, Grefft-Alami A, et al. Augmentation par la vitamine A des effets de la chimiotherapie dans les cancers du sein metastases apres la menopause. Ann Med Interne 1985;136:551-4.

206. Israel L, Hajji O, Grefft-Alami A, et al. Augmentation par la vitamine A des effets de la chimiotherapie dans les cancers du sein metastases apres la menopause. Ann Med Interne 1985;136:551-4.

207. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

208. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

209. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

210. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

211. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

212. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

213. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

214. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

215. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

216. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

217. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

218. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

219. Lersch C, Zeuner M, Bauer A, et al. Nonspecific immunostimulation with low doses of cyclophosphamide (LDCY), thymostimulin, and Echinacea purpurea extracts (Echinacin) in patients with far advanced colorectal cancers: Preliminary results. Cancer Invest 1992;10:343-8.

220. Lersch C, Zeuner M, Bauer A, et al. Nonspecific immunostimulation with low doses of cyclophosphamide (LDCY), thymostimulin, and Echinacea purpurea extracts (Echinacin) in patients with far advanced colorectal cancers: Preliminary results. Cancer Invest 1992;10:343-8.

221. Holoya PY, Duelge J, Hansen RM, et al. Prophylaxis of ifosfamide toxicity with oral acetylcysteine. Sem Oncol 1983;10(suppl 1):66-71.

222. Slavik M, Saiers JH. Phase I clinical study of acetylcysteine's preventing ifosfamide-induced hematuria. Sem Oncol 1983;10(suppl 1):62-5.

223. Loehrer PJ, Williams SD, Einhorn LH. N-Acetylcysteine and ifosfamide in the treatment of unresectable pancreatic adenocarcinoma and refractory testicular cancer. Sem Oncol 1983;10(suppl 1):72-5.

224. Morgan LR, Donley PJ, Harrison EF. The control of ifosfamide induced hematuria with N-acetylcysteine. Proc Am Assoc Cancer Res 1981;22:190.

225. De Blasio F, et al. N-acetyl cysteine (NAC) in preventing nausea and vomiting induced by chemotherapy in patients suffering from inoperable non small cell lung cancer (NSCLC). Chest 1996;110(4, Suppl):103S.

226. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

227. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

228. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

229. Holoya PY, Duelge J, Hansen RM, et al. Prophylaxis of ifosfamide toxicity with oral acetylcysteine. Sem Oncol 1983;10(suppl 1):66-71.

230. Slavik M, Saiers JH. Phase I clinical study of acetylcysteine's preventing ifosfamide-induced hematuria. Sem Oncol 1983;10(suppl 1):62-5.

231. Loehrer PJ, Williams SD, Einhorn LH. N-Acetylcysteine and ifosfamide in the treatment of unresectable pancreatic adenocarcinoma and refractory testicular cancer. Sem Oncol 1983;10(suppl 1):72-5.

232. Morgan LR, Donley PJ, Harrison EF. The control of ifosfamide induced hematuria with N-acetylcysteine. Proc Am Assoc Cancer Res 1981;22:190.

233. De Blasio F, et al. N-acetyl cysteine (NAC) in preventing nausea and vomiting induced by chemotherapy in patients suffering from inoperable non small cell lung cancer (NSCLC). Chest 1996;110(4, Suppl):103S.

234. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

235. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

236. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

237. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

238. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

239. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

240. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

241. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

242. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

243. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

244. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

245. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

246. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

247. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

248. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

249. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

250. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

251. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

252. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

253. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

254. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

255. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

256. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

257. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

258. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

259. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292-4.

260. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706-7.

261. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610-2.

262. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524-5.

263. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531-9.

264. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292-4.

265. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706-7.

266. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610-2.

267. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524-5.

268. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531-9.