Tretinoin-Mequinol

Skip to the navigation

Drug Information

Summary of Interactions with Vitamins, Herbs, & Foods

Types of interactions: Beneficial Adverse Check

Replenish Depleted Nutrients

  • Magnesium and Potassium

    The chemotherapy drug cisplatin may cause excessive loss of magnesium and potassium in the urine.1 , 2 Preliminary reports suggest that both potassium and magnesium supplementation may be necessary to increase low potassium levels.3 , 4 Severe magnesium deficiency caused by cisplatin therapy has been reported to result in seizures.5 Severe magnesium deficiency is a potentially dangerous medical condition that should only be treated by a doctor. People receiving cisplatin chemotherapy should ask their prescribing doctor to closely monitor magnesium and potassium status.

  • Lactobacillus GG

    In a preliminary trial, supplementation with a probiotic (Lactobacillus GG) reduced the frequency of severe diarrhea and the incidence of abdominal discomfort related to the use of 5-FU. The amount of Lactobacillus GG used was 10-20 billion organisms per day during the 24 weeks of chemotherapy.11

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • N-Acetyl Cysteine

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C appears to increase the effectiveness of chemotherapy in animals and with human breast cancer cells in test tube research.13 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.14

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but it clearly shows that antioxidants need not be avoided for fear that the actions of chemotherapy are interfered with.15 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Spleen Peptide Extract

    Patients with inoperable head and neck cancer were treated with a spleen peptide preparation (Polyerga) in a double-blind trial during chemotherapy with cisplatin and 5-FU.19 The spleen preparation had a significant stabilizing effect on certain white blood cells. People taking it also experienced stabilized body weight and a reduction in the fatigue and inertia that usually accompany this combination of chemotherapy agents.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Taurine

    Taurine has been shown to be depleted in people taking chemotherapy.21 It remains unclear how important this effect is or if people taking chemotherapy should take taurine supplements.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Reduce Side Effects

  • Acetyl-L-Carnitine

    Acetyl-L-carnitine in the amount of 1,000 mg three times per day for eight weeks has been shown to improve nerve damage (neuropathy) caused by the chemotherapy drug cisplatin.23

  • Calcium and Magnesium
    In a double-blind trial, intravenous administration of calcium and magnesium before and after administration of oxaliplatin prevented the development of oxaliplatin-induced nerve damage.25 However, in another double-blind trial, the same treatment regimen as in the other study did not prevent oxaliplatin-induced nerve damage.26 It is not known whether oral administration of these minerals would also be beneficial.
  • Ginger

    Ginger (Zingiber officinale) can be helpful in alleviating nausea and vomiting caused by chemotherapy.29 , 30 Ginger, as tablets, capsules, or liquid herbal extracts, can be taken in 500 mg amounts every two or three hours, for a total of 1 gram per day.

  • Glutamine

    Though cancer cells use glutamine as a fuel source, studies in humans have not found that glutamine stimulates growth of cancers in people taking chemotherapy.33 , 34 In fact, animal studies show that glutamine may actually decrease tumor growth while increasing susceptibility of cancer cells to radiation and chemotherapy,35 , 36 though such effects have not yet been studied in humans.

    Glutamine has successfully reduced chemotherapy-induced mouth sores. In one trial, people were given 4 grams of glutamine in an oral rinse, which was swished around the mouth and then swallowed twice per day.37 Thirteen of fourteen people in the study had fewer days with mouth sores as a result. These excellent results have been duplicated in some,38 but not all39 double-blind research. In another study, patients receiving high-dose paclitaxel and melphalan had significantly fewer episodes of oral ulcers and bleeding when they took 6 grams of glutamine four times daily along with the chemotherapy.40

    One double-blind trial suggested that 6 grams of glutamine taken three times per day can decrease diarrhea caused by chemotherapy.41 However, other studies using higher amounts or intravenous glutamine have not reported this effect.42 , 43

    Intravenous use of glutamine in people undergoing bone marrow transplants, a procedure sometimes used to allow very high amounts of chemotherapy to be used, has led to reduced hospital stays, leading to a savings of over $21,000 for each patient given glutamine.44

    In a double-blind study, supplementation with 18 grams of glutamine per day for 15 days, starting five days before the beginning of 5-FU therapy, significantly reduced the severity of drug-induced intestinal toxicity.45

    Intravenous use of glutamine in people undergoing bone marrow transplants, a procedure sometimes used to allow very high amounts of chemotherapy to be used, has led to reduced hospital stays, leading to a savings of over $21,000 for each patient given glutamine.46

  • Glutathione

    High-dose cisplatin chemotherapy is associated with kidney toxicity and damage, which may be reduced by glutathione administration.61 , 62 , 63 , 64 Nerve damage is another frequent complication of high amounts of cisplatin. Preliminary evidence has shown that glutathione injections may protect nerve tissue during cisplatin therapy without reducing cisplatin’s anti-tumor activity.65 , 66 , 67 There is no evidence that glutathione taken by mouth has the same benefits.

  • Melatonin

    Melatonin supplementation (20 mg per day) has decreased toxicity and improved effectiveness of chemotherapy with cisplatin plus etoposide and cisplatin plus 5-FU.75

  • Probiotics

    In a preliminary trial, supplementation with a probiotic (Lactobacillus GG) reduced the frequency of severe diarrhea and the incidence of abdominal discomfort related to the use of 5-FU. The amount of Lactobacillus GG used was 10-20 billion organisms per day during the 24 weeks of chemotherapy.77

  • Selenium

    In one human study, administration of 4,000 mcg per day of a selenium product, Seleno-Kappacarrageenan, reduced the kidney damage and white blood cell–lowering effects of the chemotherapy drug cisplatin.79 The amount of selenium used in this study is potentially toxic and should only be used under the supervision of a doctor. In another study, patients being treated with cisplatin and cyclophosphamide for ovarian cancer were given a multivitamin preparation, with or without 200 mcg of selenium per day. Compared with the group not receiving selenium, those receiving selenium had a smaller reduction in white blood cell count and fewer chemotherapy side effects such as nausea, hair loss, weakness, and loss of appetite.80

  • Spleen Peptide Extract

    Patients with inoperable head and neck cancer were treated with a spleen peptide preparation (Polyerga) in a double-blind trial during chemotherapy with cisplatin and 5-FU.83 The spleen preparation had a significant stabilizing effect on certain white blood cells. People taking it also experienced stabilized body weight and a reduction in the fatigue and inertia that usually accompany this combination of chemotherapy agents.

  • Wheat Grass

    In a preliminary trial, taking wheat grass in the amount of 60 ml (about 2 ounces) per day during chemotherapy reduced the incidence of certain chemotherapy-related side effects (including anemia and a decline in white blood cell counts) in women with breast cancer. Taking wheat grass did not appear to interfere with the anticancer effect of the chemotherapy. The chemotherapy used in this study was a combination of 5-fluorouracil, doxorubicin, and cyclophosphamide.85

Support Medicine

  • Milk Thistle

    Milk thistle’s (Silybum marianum) major flavonoids, known collectively as silymarin, have shown synergistic actions with the chemotherapy drugs cisplatin and doxorubicin (Adriamycin) in test tubes.87 Silymarin also offsets the kidney toxicity of cisplatin in animals.88 Silymarin has not yet been studied in humans treated with cisplatin. There is some evidence that silymarin may not interfere with some chemotherapy in humans with cancer.89

  • Thymus Extracts

    Peptides or short proteins derived from the thymus gland, an important immune organ, have been used in conjunction with chemotherapy drugs for people with cancer. One study using thymosin fraction V in combination with chemotherapy, compared with chemotherapy alone, found significantly longer survival times in the thymosin fraction V group.93 A related substance, thymostimulin, decreased some side effects of chemotherapy and increased survival time compared with chemotherapy alone.94 A third product, thymic extract TP1, was shown to improve immune function in people treated with chemotherapy compared with effects of chemotherapy alone.95 Thymic peptides need to be administered by injection. People interested in their combined use with chemotherapy should consult a doctor.

  • Wheat Grass

    In a preliminary trial, taking wheat grass in the amount of 60 ml (about 2 ounces) per day during chemotherapy reduced the incidence of certain chemotherapy-related side effects (including anemia and a decline in white blood cell counts) in women with breast cancer. Taking wheat grass did not appear to interfere with the anticancer effect of the chemotherapy. The chemotherapy used in this study was a combination of 5-fluorouracil, doxorubicin, and cyclophosphamide.99

Reduces Effectiveness

  • none

Potential Negative Interaction

  • Vitamin A

    Large amounts of vitamin A can cause side effects, and oral tretinoin can cause similar side effects. Combining vitamin A with oral tretinoin is likely to increase the risk of side effects. People taking oral tretinoin should probably not take more than 10,000 IU of supplemental vitamin A per day.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Explanation Required 

  • Vitamin A

    A controlled French trial reported that when postmenopausal late-stage breast cancer patients were given very large amounts of vitamin A (350,000–500,000 IU per day) along with chemotherapy, remission rates were significantly better than when the chemotherapy was not accompanied by vitamin A.101 Similar results were not found in premenopausal women. The large amounts of vitamin A used in the study are toxic and require clinical supervision.

  • Antioxidants

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.103 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research.104 Vitamin C appears to increase the effectiveness of chemotherapy in animals105 and with human breast cancer cells in test tube research.106 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.107

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.108 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Echinacea

    Echinacea is a popular immune-boosting herb that has been investigated for use with chemotherapy. One study investigated the actions of cyclophosphamide, echinacea, and thymus gland extracts to treat advanced cancer patients. Although small and uncontrolled, this trial suggested that the combination modestly extended the life span of some patients with inoperable cancers.115 Signs of restoration of immune function were seen in these patients.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • N-Acetyl Cysteine

    NAC, an amino acid-like supplement that possesses antioxidant activity, has been used in four human studies to decrease the kidney and bladder toxicity of the chemotherapy drug ifosfamide.117 , 118 , 119 , 120 These studies used 1–2 grams NAC four times per day. Th+N110ere was no sign that NAC interfered with the efficacy of ifosfamide in any of these studies. Intakes of NAC over 4 grams per day may cause nausea and vomiting.

    The newer anti-nausea drugs prescribed for people taking chemotherapy lead to greatly reduced nausea and vomiting for most people. Nonetheless, these drugs often do not totally eliminate all nausea. Natural substances used to reduce nausea should not be used instead of prescription anti-nausea drugs. Rather, under the guidance of a doctor, they should be added to those drugs if needed. At least one trial suggests that NAC at 1,800 mg per day may reduce nausea and vomiting caused by chemotherapy.121

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C appears to increase the effectiveness of chemotherapy in animals and with human breast cancer cells in test tube research.122 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.123

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.124 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin A, Vitamin C, and N-Acetyl Cysteine

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.133 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research.134 Vitamin C appears to increase the effectiveness of chemotherapy in animals135 and with human breast cancer cells in test tube research.136 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.137

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but neither does it show that antioxidants should be avoided for fear that the actions of chemotherapy are interfered with.138 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin C

    Chemotherapy can injure cancer cells by creating oxidative damage. As a result, some oncologists recommend that patients avoid supplementing antioxidants if they are undergoing chemotherapy. Limited test tube research occasionally does support the idea that an antioxidant can interfere with oxidative damage to cancer cells.145 However, most scientific research does not support this supposition.

    A modified form of vitamin A has been reported to work synergistically with chemotherapy in test tube research. Vitamin C combined with Vitamin K3 appears to increase the effectiveness of chemotherapy in animals146 and with human breast cancer cells in test tube research.147 In a double-blind study, Japanese researchers found that the combination of vitamin E, vitamin C, and N-acetyl cysteine (NAC)—all antioxidants—protected against chemotherapy-induced heart damage without interfering with the action of the chemotherapy.148

    A comprehensive review of antioxidants and chemotherapy leaves open the question of whether supplemental antioxidants definitely help people with chemotherapy side effects, but it clearly shows that antioxidants need not be avoided for fear that the actions of chemotherapy are interfered with.149 Although research remains incomplete, the idea that people taking chemotherapy should avoid antioxidants is not supported by scientific research.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
The Drug-Nutrient Interactions table may not include every possible interaction. Taking medicines with meals, on an empty stomach, or with alcohol may influence their effects. For details, refer to the manufacturers’ package information as these are not covered in this table. If you take medications, always discuss the potential risks and benefits of adding a new supplement with your doctor or pharmacist.

References

1. Buckley JE, Clark VL, Meyer TJ, Pearlman NW. Hypomagnesemia after cisplatin combination chemotherapy. Arch Intern Med 1984;144:2347.

2. Threlkeld DS, ed. Antineoplastics, alkylating agents, cisplatin (CDDP). In Facts and Comparisons Drug Information. St. Louis, MO: Facts and Comparisons, Feb 1999, 652a-2d.

3. Rodriguez M, Solanki DL, Whang R. Refractory potassium repletion due to Cisplatin-induced magnesium depletion. Arch Intern Med 1989;149:2592-4.

4. Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med 1992;152:40-5.

5. van de Loosdrecht AA, Gietema JA, van der Graaf WT. Seizures in a patient with disseminated testicular cancer due to cisplatin-induced hypomagnesaemia. Acta Oncol 2000;39:239-40.

6. Buckley JE, Clark VL, Meyer TJ, Pearlman NW. Hypomagnesemia after cisplatin combination chemotherapy. Arch Intern Med 1984;144:2347.

7. Threlkeld DS, ed. Antineoplastics, alkylating agents, cisplatin (CDDP). In Facts and Comparisons Drug Information. St. Louis, MO: Facts and Comparisons, Feb 1999, 652a-2d.

8. Rodriguez M, Solanki DL, Whang R. Refractory potassium repletion due to Cisplatin-induced magnesium depletion. Arch Intern Med 1989;149:2592-4.

9. Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med 1992;152:40-5.

10. van de Loosdrecht AA, Gietema JA, van der Graaf WT. Seizures in a patient with disseminated testicular cancer due to cisplatin-induced hypomagnesaemia. Acta Oncol 2000;39:239-40.

11. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

12. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

13. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

14. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

15. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

16. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

17. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

18. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

19. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

20. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

21. Desai TK, Maliakkal J, Kinzie JL, et al. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992;55:708-11.

22. Desai TK, Maliakkal J, Kinzie JL, et al. Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 1992;55:708-11.

23. Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005;41:1746-50.

24. Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005;41:1746-50.

25. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421-7.

26. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol2013 Dec 2 [Epub ahead of print].

27. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421-7.

28. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol2013 Dec 2 [Epub ahead of print].

29. Meyer K, Schwartz J, Crater D, Keyes B. Zingiber officinale (ginger) used to prevent 8-Mop associated nausea. Dermatol Nurs 1995;7:242-4.

30. Pace JC. Oral ingestion of encapsulated ginger and reported self care actions for the relief of chemotherapy-associated nausea and vomiting. Dissertation Abstr Int 1987;8:3297.

31. Meyer K, Schwartz J, Crater D, Keyes B. Zingiber officinale (ginger) used to prevent 8-Mop associated nausea. Dermatol Nurs 1995;7:242-4.

32. Pace JC. Oral ingestion of encapsulated ginger and reported self care actions for the relief of chemotherapy-associated nausea and vomiting. Dissertation Abstr Int 1987;8:3297.

33. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

34. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

35. Klimberg VS, McClellan JL. Glutamine, cancer, and its therapy. Am J Surg 1996;172:418-24.

36. Souba WW. Glutamine and cancer. Ann Surg 1993;218:715-28 [review].

37. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis: a pilot study. J Lab Clin Med 1996;127:223-8.

38. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer 1998;83:1433-9.

39. Okuno SH, Woodhouse CO, Loprinzi CL, et al. Phase III controlled evaluation of glutamine for decreasing stomatitis in patients receiving fluorouracil (5-FU)-based chemotherapy. Am J Clin Oncol 1999;22:258-61.

40. Cockerham MB, Weinberger BB, Lerchie SB. Oral glutamine for the prevention of oral mucositis associated with high-dose paclitaxel and melphalan for autologous bone marrow transplantation. Ann Pharmacother 2000;34:300-3.

41. Muscaritoli M, Micozzi A, Conversano L, et al. Oral glutamine in the prevention of chemotherapy-induced gastrointestinal toxicity Eur J Cancer 1997;33:319-20.

42. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

43. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

44. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

45. Daniele B, Perrone F, Gallo C, et al. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut 2001;48:28-33.

46. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

47. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

48. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

49. Klimberg VS, McClellan JL. Glutamine, cancer, and its therapy. Am J Surg 1996;172:418-24.

50. Souba WW. Glutamine and cancer. Ann Surg 1993;218:715-28 [review].

51. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis: a pilot study. J Lab Clin Med 1996;127:223-8.

52. Anderson PM, Schroeder G, Skubitz KM. Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. Cancer 1998;83:1433-9.

53. Okuno SH, Woodhouse CO, Loprinzi CL, et al. Phase III controlled evaluation of glutamine for decreasing stomatitis in patients receiving fluorouracil (5-FU)-based chemotherapy. Am J Clin Oncol 1999;22:258-61.

54. Cockerham MB, Weinberger BB, Lerchie SB. Oral glutamine for the prevention of oral mucositis associated with high-dose paclitaxel and melphalan for autologous bone marrow transplantation. Ann Pharmacother 2000;34:300-3.

55. Muscaritoli M, Micozzi A, Conversano L, et al. Oral glutamine in the prevention of chemotherapy-induced gastrointestinal toxicity Eur J Cancer 1997;33:319-20.

56. Bozzetti F, Biganzoli L, Gavazzi C, et al. Glutamine supplementation in cancer patients receiving chemotherapy: A double-blind randomized study Nutr 1997;13:748-51.

57. van Zaanen HCT, van der Lelie H, Timmer JG, et al. Parenteral glutamine dipeptide supplementation does not ameliorate chemotherapy-induced toxicity. Cancer 1994;74:2879-84.

58. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

59. Daniele B, Perrone F, Gallo C, et al. Oral glutamine in the prevention of fluorouracil induced intestinal toxicity: a double blind, placebo controlled, randomised trial. Gut 2001;48:28-33.

60. MacBurney M, Young LS, Ziegler TR, Wilmore DW. A cost-evaluation of Glutamine-supplemented parenteral nutrition in adult bone marrow transplant patients. J Am Diet Assoc 1994;94:1263-6.

61. Fontanelli R, Spatti G, Raspagliesi F, et al. A preoperative single course of high-dose cisplatin and bleomycin with glutathione protection in bulky stage IB/II carcinoma of the cervix. Ann Oncol 1992;3:117-21.

62. Plaxe S, Freddo J, Kim S, et al. Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol 1994;55:82-6.

63. Di Re F, Bohm S, Oriana S, et al. Efficacy and safety of high-dose cisplatin and cyclophosphamide with glutathione protection in the treatment of bulky advanced epithelial ovarian cancer. Cancer Chemother Pharmacol 1990;25:355-60.

64. Tedeschi M, De Cesare A, Oriana S, et al. The role of glutathione in combination with cisplatin in the treatment of ovarian cancer. Cancer Treat Rev 1991;18:253-9 [review].

65. Smyth JF, Bowman A, Perren T, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: Results of a double-blind, randomised trial. Ann Oncol 1997;8:569-73.

66. Colombo N, Bini S, Miceli D, et al. Weekly cisplatin ± glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995;5:81-6.

67. Cascinu S, Cordella L, Del Ferro E, et al. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol 1995;13:26-32.

68. Fontanelli R, Spatti G, Raspagliesi F, et al. A preoperative single course of high-dose cisplatin and bleomycin with glutathione protection in bulky stage IB/II carcinoma of the cervix. Ann Oncol 1992;3:117-21.

69. Plaxe S, Freddo J, Kim S, et al. Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol 1994;55:82-6.

70. Di Re F, Bohm S, Oriana S, et al. Efficacy and safety of high-dose cisplatin and cyclophosphamide with glutathione protection in the treatment of bulky advanced epithelial ovarian cancer. Cancer Chemother Pharmacol 1990;25:355-60.

71. Tedeschi M, De Cesare A, Oriana S, et al. The role of glutathione in combination with cisplatin in the treatment of ovarian cancer. Cancer Treat Rev 1991;18:253-9 [review].

72. Smyth JF, Bowman A, Perren T, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: Results of a double-blind, randomised trial. Ann Oncol 1997;8:569-73.

73. Colombo N, Bini S, Miceli D, et al. Weekly cisplatin ± glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995;5:81-6.

74. Cascinu S, Cordella L, Del Ferro E, et al. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol 1995;13:26-32.

75. Lissoni P, Barni S, Mandalà, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer 1999;35:1688-92.

76. Lissoni P, Barni S, Mandalà, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer 1999;35:1688-92.

77. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

78. Osterlund P, Ruotsalainen T, Korpela R, et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br J Cancer 2007;97:1028-34.

79. Hu Y-J, Chen Y, Zhang Y-Q, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997;56:331-41.

80. Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 2004;93:320-7.

81. Hu Y-J, Chen Y, Zhang Y-Q, et al. The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 1997;56:331-41.

82. Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecol Oncol 2004;93:320-7.

83. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

84. Borghardt J, Rosien B, Gortelmeyer R, et al. Effects of a spleen peptide preparation as supportive therapy in inoperable head and neck cancer patients. Arzneimittelforschung 2000;50:178-84.

85. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

86. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

87. Scambia G, De Vincenzo R, Ranelletti FO, et al. Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer 1996;32A:877-82.

88. Gaedeke J, Fels LM, Bokemeyer C, et al. Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 1996;11:55-62.

89. Invernizzi R, Bernuzzi S, Ciani D, Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haemotologia 1993;78:340-1.

90. Scambia G, De Vincenzo R, Ranelletti FO, et al. Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer 1996;32A:877-82.

91. Gaedeke J, Fels LM, Bokemeyer C, et al. Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 1996;11:55-62.

92. Invernizzi R, Bernuzzi S, Ciani D, Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haemotologia 1993;78:340-1.

93. Cohen MH, Chretien PB, Ihde DC, et al. Thymosin fraction V and intensive combination chemotherapy. Prolonging the survival of patients with small-cell lung cancer. JAMA 1979;241:1813-5.

94. Macchiarini P, Danesi R, Del Tacca M, Angeletti CA. Effects of thymostimulin on chemotherapy-induced toxicity and long-term survival in small cell lung cancer patients. Anticancer Res 1989;9:193-6.

95. Shoham J, Theodor E, Brenner HJ, et al. Enhancement of the immune system of chemotherapy-treated cancer patients by simultaneous treatment with thymic extract, TP-1. Cancer Immunol Immunother 1980;9:173-80.

96. Cohen MH, Chretien PB, Ihde DC, et al. Thymosin fraction V and intensive combination chemotherapy. Prolonging the survival of patients with small-cell lung cancer. JAMA 1979;241:1813-5.

97. Macchiarini P, Danesi R, Del Tacca M, Angeletti CA. Effects of thymostimulin on chemotherapy-induced toxicity and long-term survival in small cell lung cancer patients. Anticancer Res 1989;9:193-6.

98. Shoham J, Theodor E, Brenner HJ, et al. Enhancement of the immune system of chemotherapy-treated cancer patients by simultaneous treatment with thymic extract, TP-1. Cancer Immunol Immunother 1980;9:173-80.

99. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

100. Bar-Sela G, Tsalic M, Fried G, Goldberg H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer 2007;58:43-8.

101. Israel L, Hajji O, Grefft-Alami A, et al. Augmentation par la vitamine A des effets de la chimiotherapie dans les cancers du sein metastases apres la menopause. Ann Med Interne 1985;136:551-4.

102. Israel L, Hajji O, Grefft-Alami A, et al. Augmentation par la vitamine A des effets de la chimiotherapie dans les cancers du sein metastases apres la menopause. Ann Med Interne 1985;136:551-4.

103. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

104. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

105. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

106. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

107. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

108. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

109. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

110. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

111. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

112. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

113. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

114. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

115. Lersch C, Zeuner M, Bauer A, et al. Nonspecific immunostimulation with low doses of cyclophosphamide (LDCY), thymostimulin, and Echinacea purpurea extracts (Echinacin) in patients with far advanced colorectal cancers: Preliminary results. Cancer Invest 1992;10:343-8.

116. Lersch C, Zeuner M, Bauer A, et al. Nonspecific immunostimulation with low doses of cyclophosphamide (LDCY), thymostimulin, and Echinacea purpurea extracts (Echinacin) in patients with far advanced colorectal cancers: Preliminary results. Cancer Invest 1992;10:343-8.

117. Holoya PY, Duelge J, Hansen RM, et al. Prophylaxis of ifosfamide toxicity with oral acetylcysteine. Sem Oncol 1983;10(suppl 1):66-71.

118. Slavik M, Saiers JH. Phase I clinical study of acetylcysteine's preventing ifosfamide-induced hematuria. Sem Oncol 1983;10(suppl 1):62-5.

119. Loehrer PJ, Williams SD, Einhorn LH. N-Acetylcysteine and ifosfamide in the treatment of unresectable pancreatic adenocarcinoma and refractory testicular cancer. Sem Oncol 1983;10(suppl 1):72-5.

120. Morgan LR, Donley PJ, Harrison EF. The control of ifosfamide induced hematuria with N-acetylcysteine. Proc Am Assoc Cancer Res 1981;22:190.

121. De Blasio F, et al. N-acetyl cysteine (NAC) in preventing nausea and vomiting induced by chemotherapy in patients suffering from inoperable non small cell lung cancer (NSCLC). Chest 1996;110(4, Suppl):103S.

122. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

123. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

124. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

125. Holoya PY, Duelge J, Hansen RM, et al. Prophylaxis of ifosfamide toxicity with oral acetylcysteine. Sem Oncol 1983;10(suppl 1):66-71.

126. Slavik M, Saiers JH. Phase I clinical study of acetylcysteine's preventing ifosfamide-induced hematuria. Sem Oncol 1983;10(suppl 1):62-5.

127. Loehrer PJ, Williams SD, Einhorn LH. N-Acetylcysteine and ifosfamide in the treatment of unresectable pancreatic adenocarcinoma and refractory testicular cancer. Sem Oncol 1983;10(suppl 1):72-5.

128. Morgan LR, Donley PJ, Harrison EF. The control of ifosfamide induced hematuria with N-acetylcysteine. Proc Am Assoc Cancer Res 1981;22:190.

129. De Blasio F, et al. N-acetyl cysteine (NAC) in preventing nausea and vomiting induced by chemotherapy in patients suffering from inoperable non small cell lung cancer (NSCLC). Chest 1996;110(4, Suppl):103S.

130. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

131. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

132. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

133. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

134. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

135. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

136. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

137. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

138. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

139. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

140. Sacks PG, Harris D, Chou T-C. Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: A rationale for combination therapy with chemotherapeutic agents. Int J Cancer 1995;61:409-15.

141. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

142. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

143. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

144. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

145. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

146. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

147. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

148. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

149. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].

150. Witenberg B, Kalir HH, Raviv Z, et al. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem Pharmacol 1999;57:823-32.

151. Taper HS et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 1987;40:575-9.

152. Kurbacher CM, Wagner U, Kolster B, et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Letters 1996:103-19.

153. Wagdi P, Fluri M, Aeschbacher B, et al. Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. Jpn Heart J 1996;37:353-9.

154. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treatment Rev 1997;23:209-40 [review].