Skip Navigation

Search Knowledgebase

Omeprazole-Clarith-Amoxicillin

Drug Information

Summary of Interactions with Vitamins, Herbs, & Foods

Types of interactions: Beneficial Adverse Check

Replenish Depleted Nutrients

  • Calcium

    In a study of elderly women, administration of omeprazole decreased the absorption of calcium,1 presumably because the drug decreased the stomach's production of hydrochloric acid, which is necessary for calcium absorption. The form of calcium used in the study to test calcium absorption was calcium carbonate. Drugs that reduce stomach acid secretion may not inhibit other forms of calcium, such as calcium citrate.2

  • Folic Acid

    Folic acid is needed by the body to utilize vitamin B12. Antacids, including omeprazole, inhibit folic acid absorption.3 People taking antacids are advised to supplement with folic acid.

  • Vitamin C

    Treatment of healthy volunteers with omeprazole for four weeks resulted in a 12.3% decrease in blood levels of vitamin C.4

  • Vitamin B12

    Omeprazole interferes with the absorption of vitamin B12 from food (though not from supplements) in some5 , 6 , 7 , 8 but not all9 , 10 studies. A true deficiency state, resulting in vitamin B12-deficiency anemia, has only been reported in one case.11 The fall in vitamin B12 status may result from the decrease in stomach acid required for vitamin B12 absorption from food caused by the drug.12 This problem may possibly be averted by drinking acidic juices when eating foods containing vitamin B12.13

    However, all people taking omeprazole need to either supplement with vitamin B12 or have their vitamin B12 status checked on a yearly basis. Even relatively small amounts of vitamin B12 such as 10–50 mcg per day, are likely to protect against drug induced vitamin depletion.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Reduce Side Effects

  • Probiotics

    A common side effect of antibiotics is diarrhea, which may be caused by the elimination of beneficial bacteria normally found in the colon. A nonpathogenic yeast known as Saccharomyces boulardii has been shown in two double-blind studies to decrease frequency of diarrhea in people taking amoxicillin as well as other penicillin-type drugs compared to placebo.14 , 15 There were overall few people in these studies using amoxicillin specifically, so there is no definitive proof that Saccharomyces boulardii will be beneficial for everyone when it is combined with amoxicillin. The studies used 1 gram of Saccharomyces boulardii per day.

    A separate double-blind study found that taking a combination of Lactobacillus acidophilus and Lactobacillus bulgaricus, two normal gut bacteria, with amoxicillin did not protect children from developing diarrhea.16 The authors of the study point out some problems such as the parents’ inability to consistently define diarrhea. However, at this time, it is unknown if lactobacillus products will reduce diarrhea due to amoxicillin.

    Controlled studies have shown that taking other probiotic microorganisms—such as Lactobacillus casei, Bifidobacterium longum, or Lactobacillus rhamnosus GG—also helps prevent antibiotic-induced diarrhea.17 , 18

    The diarrhea experienced by some people who take antibiotics also might be due to an overgrowth of the bacterium Clostridium difficile, which causes a disease known as pseudomembranous colitis. Controlled studies have shown that supplementation with harmless yeast—such as Saccharomyces boulardii 19 or Saccharomyces cerevisiae (baker’s or brewer’s yeast)20—helps prevent recurrence of this infection. In one study, taking 500 mg of Saccharomyces boulardii twice daily enhanced the effectiveness of the antibiotic vancomycin in preventing recurrent clostridium infection.21 Therefore, people taking antibiotics who later develop diarrhea might benefit from supplementing with saccharomyces organisms.

    Treatment with antibiotics also commonly leads to an overgrowth of yeast (Candida albicans) in the vagina (candida vaginitis) and the intestines (sometimes referred to as “dysbiosis”). Controlled studies have shown that Lactobacillus acidophilus might prevent candida vaginitis.22

  • Brewer’s Yeast

    A common side effect of antibiotics is diarrhea, which may be caused by the elimination of beneficial bacteria normally found in the colon. Controlled studies have shown that taking probiotic microorganisms—such as Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium longum, or Saccharomyces boulardii—helps prevent antibiotic-induced diarrhea.23

    The diarrhea experienced by some people who take antibiotics also might be due to an overgrowth of the bacterium Clostridium difficile, which causes a disease known as pseudomembranous colitis. Controlled studies have shown that supplementation with harmless yeast—such as Saccharomyces boulardii 24 or Saccharomyces cerevisiae (baker’s or brewer’s yeast)25—helps prevent recurrence of this infection. In one study, taking 500 mg of Saccharomyces boulardii twice daily enhanced the effectiveness of the antibiotic vancomycin in preventing recurrent clostridium infection.26 Therefore, people taking antibiotics who later develop diarrhea might benefit from supplementing with saccharomyces organisms.

    Treatment with antibiotics also commonly leads to an overgrowth of yeast (Candida albicans) in the vagina (candida vaginitis) and the intestines (sometimes referred to as “dysbiosis”). Controlled studies have shown that Lactobacillus acidophilus might prevent candida vaginitis.27

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Cranberry

    People taking omeprazole may increase absorption of dietary vitamin B12 by drinking cranberry (Vaccinium marocarpon) juice or other acidic liquids with vitamin B12-containing foods.36

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Support Medicine

  • Bromelain

    When taken with amoxicillin, bromelain was shown to increase absorption of amoxicillin in humans.42 When 80 mg of bromelain was taken together with amoxicillin and tetracycline, blood levels of both drugs increased, though how bromelain acts on drug metabolism remains unknown.43 An older report found bromelain also increased the actions of other antibiotics, including penicillin, chloramphenicol, and erythromycin, in treating a variety of infections. In that trial, 22 out of 23 people who had previously not responded to these antibiotics did so after adding bromelain taken four times per day.44

    Doctors will sometimes prescribe enough bromelain to equal 2,400 gelatin dissolving units (listed as GDU on labels) per day. This amount would equal approximately 3,600 MCU (milk clotting units), another common measure of bromelain activity.

  • Probiotics

    A common side effect of antibiotics is diarrhea, which may be caused by the elimination of beneficial bacteria normally found in the colon. Controlled studies have shown that taking probiotic microorganisms—such as Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium longum, or Saccharomyces boulardii—helps prevent antibiotic-induced diarrhea.45

    The diarrhea experienced by some people who take antibiotics also might be due to an overgrowth of the bacterium Clostridium difficile, which causes a disease known as pseudomembranous colitis. Controlled studies have shown that supplementation with harmless yeast—such as Saccharomyces boulardii 46 or Saccharomyces cerevisiae (baker’s or brewer’s yeast)47—helps prevent recurrence of this infection. In one study, taking 500 mg of Saccharomyces boulardii twice daily enhanced the effectiveness of the antibiotic vancomycin in preventing recurrent clostridium infection.48 Therefore, people taking antibiotics who later develop diarrhea might benefit from supplementing with saccharomyces organisms.

    Treatment with antibiotics also commonly leads to an overgrowth of yeast (Candida albicans) in the vagina (candida vaginitis) and the intestines (sometimes referred to as “dysbiosis”). Controlled studies have shown that Lactobacillus acidophilus might prevent candida vaginitis.49

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.

Reduces Effectiveness

  • St. John’s Wort

    In a study of healthy human volunteers, supplementing with St. John's wort greatly decreased omeprazole blood levels by accelerating the metabolism of the drug.59 Use of St. John's wort may, therefore, interfere with the actions of omeprazole.

Potential Negative Interaction

  • none

Explanation Required 

  • Magnesium
    In a case report, a man developed severe magnesium deficiency after long-term treatment with a proton pump inhibitor (pantoprazole or lansoprazole).[REF] Severe magnesium deficiency as a result of the use of proton pump inhibitors appears to be rare among people who have no other risk factors for magnesium deficiency. However, in a study of hospitalized patients, the prevalence of low serum magnesium levels was significantly greater among users of proton pump inhibitors than among nonusers (23% vs. 11%).60 People taking proton pump inhibitors (PPIs) should ask their doctor whether to take a magnesium supplement or whether to have their magnesium levels monitored.61
    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
  • Vitamin K

    Several cases of excessive bleeding have been reported in people who take antibiotics.62 , 63 , 64 , 65 This side effect may be the result of reduced vitamin K activity and/or reduced vitamin K production by bacteria in the colon. One study showed that people who had taken broad-spectrum antibiotics had lower liver concentrations of vitamin K2 (menaquinone), though vitamin K1 (phylloquinone) levels remained normal.66 Several antibiotics appear to exert a strong effect on vitamin K activity, while others may not have any effect. Therefore, one should refer to a specific antibiotic for information on whether it interacts with vitamin K. Doctors of natural medicine sometimes recommend vitamin K supplementation to people taking antibiotics. Additional research is needed to determine whether the amount of vitamin K1 found in some multivitamins is sufficient to prevent antibiotic-induced bleeding. Moreover, most multivitamins do not contain vitamin K.

    The interaction is supported by preliminary, weak, fragmentary, and/or contradictory scientific evidence.
The Drug-Nutrient Interactions table may not include every possible interaction. Taking medicines with meals, on an empty stomach, or with alcohol may influence their effects. For details, refer to the manufacturers’ package information as these are not covered in this table. If you take medications, always discuss the potential risks and benefits of adding a new supplement with your doctor or pharmacist.

References

1. O'Connell MB, Madden DM, Murray AM, et al. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med 2005;118:778–81.

2. (Recker RR. Calcium absorption and achlorhydria. N Engl J Med 1985;313:70–3.

3. Russell RM, Golner BB, Krasinski SD, et al. Effect of antacid and H2 receptor antagonists on the intestinal absorption of folic acid. J Lab Clin Med 1988;112:458–63.

4. Henry EB, Carswell A, Wirz A, et al. Proton pump inhibitors reduce the bioavailability of dietary vitamin C. Aliment Pharmacol Ther2005;22:539–5.

5. Marcuard SP, Albernaz L, Khazanie PG. Omeprazole therapy causes malabsorption of cyanocobalamin (Vitamin B12). Ann Intern Med 1994;120:211–5.

6. Termanini B, Gibril F, Sutliff VE, et al. Effect of long-term gastric acid suppressive therapy on serum vitamin B12 levels in patients with Zollinger-Ellison syndrome. Am J Med 1998;104:422–30.

7. Koop H. Review article: metabolic consequences of long-term inhibition of acid secretion by omeprazole. Aliment Pharmacol Ther 1992;6:399–406 [review].

8. Bellou A, Aimone-Gastin I, De Korwin JD, et al. Cobalamin deficiency with megaloblastic anaemia in one patient under long-term omeprazole therapy. J Intern Med 1996;240:161–4.

9. Koop H, Bachem MG. Serum iron, ferritin, and vitamin B12 during prolonged omeprazole therapy. J Clin Gastroenterol 1992;14:288–92.

10. Schenk BE, Festen HP, Kuipers EJ, et al. Effect of short-and long-term treatment with omeprazole on the absorption and serum levels of cobalamin. Aliment Pharmacol Ther 1996;10:541–5.

11. Bellou A, Aimone-Gastin I, De Korwin JD, et al. Cobalamin deficiency with megaloblastic anaemia in one patient under long-term omeprazole therapy. J Intern Med 1996;240:161–4.

12. Saltzman JR, Kemp JA, Golner BB, et al. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. J Am Coll Nutr 1994;13:584–91.

13. Bradford GS, Taylor CT. Omeprazole and vitamin B12 deficiency. Ann Pharmacother 1999;33:641–3 [review].

14. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

15. McFarland LV, Surawicz CM, Greenberg RN, et al. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol 1995;90:439–48.

16. Tankanow RM, Ross MB, Ertel IJ, et al. A double-blind, placebo-controlled study of the efficacy of Lactinex in the prophylaxis of amoxicillin-induced diarrhea. DICP Ann Pharmacother 1990;24:382–4.

17. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

18. Bradley C. Johnston, Alison L. Supina, and Sunita Vohra. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. CMAJ 2006;175:777

19. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

20. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

21. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

22. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

23. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

24. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

25. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

26. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

27. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

28. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

29. McFarland LV, Surawicz CM, Greenberg RN, et al. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol 1995;90:439–48.

30. Tankanow RM, Ross MB, Ertel IJ, et al. A double-blind, placebo-controlled study of the efficacy of Lactinex in the prophylaxis of amoxicillin-induced diarrhea. DICP Ann Pharmacother 1990;24:382–4.

31. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

32. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

33. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

34. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

35. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

36. Saltzman JR, Kemp JA, Golner BB, et al. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. J Am Coll Nutr 1994;13:584–91.

37. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

38. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

39. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

40. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

41. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

42. Tinozzi S, Venegoni A. Effect of bromelain on serum and tissue levels of amoxicillin. Drugs Exp Clin Res 1978;4:39–44.

43. Luerti M, Vignali M. Influence of bromelain on penetration of antibiotics in uterus, salpinx and ovary. Drugs Exp Clin Res 1978;4:45–8.

44. Neubauer RA. A plant protease for potentiation of and possible replacement of antibiotics. Exp Med Surg 1961;19:143–60.

45. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

46. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

47. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

48. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

49. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

50. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

51. McFarland LV, Surawicz CM, Greenberg RN, et al. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol 1995;90:439–48.

52. Tankanow RM, Ross MB, Ertel IJ, et al. A double-blind, placebo-controlled study of the efficacy of Lactinex in the prophylaxis of amoxicillin-induced diarrhea. DICP Ann Pharmacother 1990;24:382–4.

53. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

54. Bradley C. Johnston, Alison L. Supina, and Sunita Vohra. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. CMAJ 2006;175:777

55. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

56. Schellenberg D, Bonington A, Champion CM, et al. Treatment of Clostridium difficile diarrhoea with brewer’s yeast. Lancet 1994;343:171–2.

57. Surawicz CM, Elmer GW, Speelman P, et al. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: A prospective study. Gastroenterol 1989;96:981–8.

58. Elmer GW, Surawicz CM, McFarland LV. Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA 1996;275:870–6 [review].

59. Wang LS, Zhou G, Zhu B, et al. St John's wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 2004;75:191–7.

60. Gau JT, Yang YX, Chen R, Kao TC. Uses of proton pump inhibitors and hypomagnesemia. Pharmacoepidemiol Drug Saf 2012;21:553–9.

61. U.S. Food and Drug Administration. FDA Drug Safety Communication: Low magnesium levels can be associated with long-term use of Proton Pump Inhibitor drugs (PPIs). U.S. Food and Drug Administration Web site. Accessed at http://www.fda.gov/drugs/drugsafety/ucm245011.htm#Additional_Information_for_Patients on September 13, 2011

62. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292–4.

63. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706–7.

64. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610–2.

65. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524–5.

66. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531–9.

67. Suzuki K, Fukushima T, Meguro K, et al. Intracranial hemorrhage in an infant owing to vitamin K deficiency despite prophylaxis. Childs Nerv Syst 1999;15:292–4.

68. Huilgol VR, Markus SL, Vakil NB. Antibiotic-induced iatrogenic hemobilia. Am J Gastroenterol 1997;92:706–7.

69. Bandrowsky T, Vorono AA, Borris TJ, Marcantoni HW. Amoxicllin-related postextraction bleeding in an anticoagulated patient with tranexamic acid rinses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:610–2.

70. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524–5.

71. Conly J, Stein K. Reduction of vitamin K2 concentration in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 1994;17:531–9.

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use. How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.